We Now Assume the following Model:

We have a pari-mutual machine which operates in the following manner: It selects (uniformly) one of the N states (X_i) and posts it.

It then selects a number Q uniformly from which gives the "odds" that X_i really obtains.

A player then has the choice of either Betting $\frac{1}{Q}$ on X_i, or refraining from betting. If he elects to bet, then he wins amount $\left(\frac{1}{Q} - 1\right)$ is X_i actually obtains and forfeits his dollar otherwise. If he pays $\frac{1}{Q}$ for ticket, gets value $\frac{1}{Q}$ if he wins, 0 otherwise.

We now assume that the individual possesses a subjective Prob. \bar{P}_i which indicates to him the Prob. that X_i actually obtains.
Then in this case he will clearly act if and only if \(P_i > Q \) (in case the \(i \)th alternative is announced with "odds" \(Q \)) since in this case his expectation is

\[
\frac{P_i}{Q} - 1
\]

Now his A priori expectation on the \(i \)th event (before the odds are posted) is clearly

\[
\text{Exp}_i = \int_0^\infty \left[\frac{P_i}{Q} - 1 \right] dQ
\]

\[
= P_i \ln \left[\frac{P_i}{Q} \right] - (P_i - \varepsilon)
\]

\[
= P_i \ln \frac{P_i}{\varepsilon} - P_i \ln \varepsilon - P_i + \varepsilon
\]

since \(Q \) is chosen uniform over \([\varepsilon, 1]\)
finally, since the event itself is chosen uniformly after the set \[X_i \]
the overall A-priori Expectation of the Player is:

\[
Ex = \frac{1}{N} \sum_i \text{Exp}_{i} = \frac{1}{N} \left[\sum_i P_i \ln P_i - \sum_i P_i \ln 3 - \sum_i P_i + \sum_i \right]
\]

\[
= \frac{1}{N} \left[\sum_i P_i \ln P_i - \ln 3 - 1 + N3 \right]
\]

If model changed slightly so he is free
on each alternative, then he is free to bet
on not on any more adventures, and his
Expectation is:

\[
\frac{\sum_i P_i \ln P_i}{\sum_i} - \ln 3 - 1 + N3 \uparrow \text{const.}
\]

so that in this model his Expectation he would be willing
is directly his information and to pay eliminates
dollars for some of costs
Further note \(N \varepsilon - 1 - \ln N \varepsilon \) is always \(> 0 \) for \(\varepsilon \leq 1 \)

(since his expectation \(\exp_i > 0 \) \(\Rightarrow \) not necessarily)

but \(\sum_i \rho_i \ln \rho_i = \ln \varepsilon - 1 + N \varepsilon \)

\[\geq - \ln N - \ln \varepsilon - 1 + N \varepsilon \]

\[= \ln \frac{1}{N \varepsilon} + N \varepsilon - 1 \geq 0 \]

but \(\min \) of \(x - \ln x \) goes from \(\pm \infty \) at \(0 \)

\[\Rightarrow 1 - \frac{1}{x} = 0 \]

\[\frac{1}{x} = 1 \quad x = 1 \] is \(\min \)

Since we have \(-\ln x + x \geq 1 \) \(\forall x \geq 0 \)

\[= 1 \] only \(x = 1 \)
ie, in are the cutoff \(E \) has the value \(\frac{1}{N} \) then \(\text{Expect} \ 0 \) if only if the Information minimum (uniform distribution) otherwise \(\text{Exp} \geq 0 \).

If we consider only the information difference from that of the Uniform over these objects, we will then always have positive information from 0 to \(\log N \)

\[I = I + \ln N \]

so that here

\[\text{Exp} = \sum \text{phi} \cdot \ln E - 1 \cdot N \frac{3}{2} \]

\[= I' - \ln N - \ln E + N \frac{3}{2} - 1 \]

\[= I' + \left(N \frac{3}{2} + \ln \left(\frac{1}{N \frac{3}{2}} \right) - 1 \right) \]

\[\text{Exp} = I' \text{ direct} \]
We can now make it an n-person game by requiring the n-players to support the bank mutually, in which case the different information of the players is a direct measure of their advantage in the game. Information can even be sold or traded in this case, with 1 bit being worth precisely 1 dollar. (provided the number of players is sufficiently large.)
In our model for differing subjective distributions, ie variable in question chosen from joint dist. P, \ldots, q, with various players to be told other variables.

ie. Assume P_1 is to be told nothing, then his subjective distribution is P_1 with info $I(P_1) = \sum \ln P_1$.

Suppose P_2 will be told the value of β, then his dist. will be $P_2 = \frac{P_2}{P_2}$, which depends upon P, and his information will be $\sum P_2 \ln P_2 = I_2$.

And his expected information on α is $\sum P_2 I_2$.

$= I_\alpha + C_\alpha \beta$

So that his advantage over P_1 given that he will be told the value of β is precisely $C_\alpha \beta$ (the correlation of α with β).

Similarly with further players - the
advantage of a player who is informed of $\rho \varphi \delta \xi$
over one who is simply informed of $\beta \chi$.

\[
C_{\Delta \delta \xi} - C_{\Delta \rho \xi}
\]

\[
\frac{I_{\Delta \varphi \xi} - I_{\Delta \rho \xi}}{\Delta \rho \xi} = I_{\Delta \varphi \xi} - \left[I_{\Delta \rho \xi} - I_{\Delta \rho \xi} + I_{\Delta \rho \xi} \right]
\]

\[
\frac{I_{\Delta \varphi \xi} + I_{\Delta \rho \xi} + C_{\Delta \rho \xi}}{\Delta \rho \xi} = C_{\Delta \rho \xi} - C_{\Delta \rho \xi}
\]
\[\frac{(\alpha \beta \gamma) - (\xi \eta \zeta)}{\rho \sigma} = \frac{(\alpha \beta \gamma) - (\xi \eta \zeta)}{\rho \sigma} \]

\[= \frac{I_{\alpha \beta \gamma} + I_{\xi \eta \zeta} - I_{\alpha \beta \gamma} - I_{\xi \eta \zeta}}{\rho \sigma} \]

\[= \frac{I_{\alpha \beta \gamma} + I_{\xi \eta \zeta} - I_{\alpha \beta \gamma} - I_{\xi \eta \zeta}}{\rho \sigma} \]

\[\text{Question is} \quad \frac{\alpha \beta \gamma + \xi \eta \zeta - \rho \sigma}{\xi \eta \zeta} = ? \]

\[= \frac{\alpha \beta \gamma}{\xi \eta \zeta} \quad \text{(No)} \]
\[
\begin{align*}
&= \sum_{x, y} \ln \frac{p_{xy}}{p_x p_y} + \sum_{x, y} \ln \frac{p_{xy}}{p_x p_y} - \sum_{x, y} \ln \frac{p_{xy}}{p_x p_y} \\
&= \sum_{x, y} \ln \left(\frac{p_{xy} p_x p_y}{p_x p_y} \right) - \ln \left(\frac{p_{xy} p_x p_y}{p_x p_y} \right)
\end{align*}
\]